Book Review: Reiner Hähnle. Automated Deduction in Multiple-valued Logics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deduction and Search Strategies for Regular Multiple-Valued Logics

The inference rule !-resolution was introduced in [27] as a technique for developing an SLD-style query answering procedure for the logic programming subset of annotated logic. The inference rule requires that the lattice of truth values be ordinary. In this paper, it is proved that all complete distributive lattices are ordinary. Properties of !-resolution in the general theorem proving settin...

متن کامل

Efficient Deduction in Many-Valued Logics

This paper tries to identify the basic problems e.countered in automated theorem proving in many-valued logics and demonstrates to which extent they call be currently solved. To this end a .umber of recently developed techniques are reviewed. We list. tile avenues of research in manyvalued theorem proving that are in our eyes the most promising.

متن کامل

Automated Deduction for Logics of Default Reasoning

We present a tableau calculus for the rational logic R of default reasoning, introduced by Kraus, Lehmann and Magidor. Our calculus is obtained by introducing suitable modalities to interpret conditional assertions, it makes use of labels to represent possible worlds, and it can be used to provide a decision procedure for R.

متن کامل

On Logical Fiberings and Automated Deduction in Many-valued Logics Using Gröbner Bases

The concept of logical fiberings is briefly summarized. Based on experiences with concrete examples an algorithmic approach is developed which leads to a represention of a many-valued logic as a logical fibering. The Stone isomorphism for expressing classical logical operations by corresponding polynomials can be extended to m-valued logics. On the basis of this, a classical deduction problem c...

متن کامل

Systematic Construction of Natural Deduction Systems for Many-Valued Logics

A construction principle for natural deduction systems for arbitrary finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness and norm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Notre Dame Journal of Formal Logic

سال: 1996

ISSN: 0029-4527

DOI: 10.1305/ndjfl/1040046147